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EVALUATION

The purpose of this effort was to demonstrate the concept of Equivalent

Aperture Loading (EAL) and interface this concept with the "Method of Moments"

(MOM) analysis called "Bodies of Revolution" (BOR). The reason that this

combination was chosen is that previously MOM and BOR were applied to a

conceptual aperture coupling problem on board a missile. The results were fourd

to be questionable because of the inability to accurately model the complex shaped

aperture involved. This effort combined the EAL technique with MOM in an

attempt to correct this deficiency and at the same time demonstrate that such a

hybridization of techniques is cost effective in terms of computer resources.

The results of the field mapping inside the missile are contained in this report

and will be compared to those obtained from measured data associated with

another RADC/RBCT project when it is completed.

The advantage of this technology are a computer cost savings by hyhrjir.zing

two or more analysis techniques while maintaining a reasonable degree of

accuracy.

DANIEL E. WARREN
Project Engineer

ffiEC O PAGE BLNK&-NOT FlLED



SECTION 1

I NMROD!, CT I ON

Bodies of revolution (BORs) are rotationally symmetric structures that approxi-

mate the enclosures of many practical systems such as missiles and aircraft fuselages.

The aperturc loading technique (ALT) is applied here to predict the plane wave ex-

cited E- and H-fields penetrating a thin, conducting walled BOR. The BOR has an

open front end and a thin, dielectricz-filled, sleeve-fit seam formed by overlapping

walls. The present version of the computer code implementing ALT applies to arbi-

trarily shaped BORs with any number of simple apertures (circumferential1 w311 scpo-

rations) and one thin capacitive seam. The code can apply, with minor moe, t.n,

to any number of odd-shaped seams and openings with material fill; e.g., conductive

putty, fiber glass, or composite.

The aperture characteristics are dealt with naturally in a localized ,r.31nV:.

In the case of composites, this permits r.itI.-e e.ise in arcounti ' for LH,, ':-,iso-

trophy of the medium. The aperture eharactericti-s cain be vAried for reasonably

small apertures with only minor changes in co,puLaLi'n. This Is partic]i I ,

ful fur .Apertures that are iii-d-fined ..here oniy an average respo:. ,ur other c -a-

tistical measure is appropriate. An ill-defiix,.t aperture,. for example, is

fit seam in a missile shell; the spacing between seam walls r!y vary fror <s-'il- tc

missile since the fit is desing d to be as "tight" as possible. So.;.a]

such apertures are shown in Figure 1.

The computer code extends the capability of an earlier BOR aper:i.r.

code, BOR3 [91, principally by employing ALT. Additional -xtensins i: .-

ments include near H-field computation, - as well as 6-polarized plane wa\ : .'x-

citation, computer memory requirement reduction by ap:.roximately 60 ,

out-of-core matrix computation and inv'ersion. The out-of-core capabf it: .- ows

large problems to be solved if long run timos can be tolerated. Tht uscr vers!,,n

of the code [4] is a collection of several codes and is operational on a PDP-11/34 mini-

computer. The solutions presented in this report were obtained with tLe PDP- 11!4.

As with BOR3, the ALT BOR code is based on a Harrington/Mautz BOR moment method

for obtaining plane wave excited scattering currents. The Harrington!Mautz code

employed in developing the ALT BOR code is a revision of the original Harring;on/

Mautz code [121 employed in BOR3. The revised Harrington/Mautz code [11 sacrifices

some accuracy in matrix element computation but achieves at least 50 percent faster

run time. The revision, however, is applicable only to ciosed bodies; therefore an

1-1



OPENING FILLED WITH
THIN SHEET OF MATERIAL

SIMiPLE

OPENING

- -- ~ ~-SLEEVE FIT SEAM1

Figure 1. Body cf Revolution with Several Types of Apertures

1-2

_____ _____ _____ _____



edge eene-n xpaiP function was incorporated in thc ALT BOR _ode I, L h, dr.e:. :an-

n. c as in thc or i, mi a ~ ge Mu

It also was necessary to alter the near F-field computation from that of BOR3;

however, it still follows closely Bevensee's approach [61 as employed in BOR3. A

near H-field computation also was included. The theory cnd coding were adapted from

aHarrington/Mautz H-field formulation BOR moment method [11.

A third Harrin 'ton/Muutz E-field formulation moment method BOR scattering code

has recently become available [131. This code is superior to the previous Harrington,'

Mautz codes, especially in the manner in which it treats edge effects. Followcing

the work of Wilton and Glission [101, they employed a "shifted" pulse type expansion

function for the S-directed surface current component with excellent success in

removing the computationally induced surface current oscillations that occur with

some geometries. An ALT BOR code based on this improved BOR code presentiy is under

development.

The ALT BOR code also is based in part on the equivalent aperture excitation

technique (EAET). The EAET is characterized by greater sensitivity over the conven-

tioii,; --.ar-field scattering method [6] in that small field strengths are determined

more accurately. In the conventional method, the surface current induced on the con-

ducting portion of the body and its corresponding scattered field are determine.

The internal field then is found by adding the impressed (exciting iield Jn the aL,-

sence of the body) and scattered fields. For small field levels, such as those as-

sociated with tiny apertures, this computation involves a subtraction of cli;t

equal numbers with a corresponding loss in accuracy. This difficulty is : ,cA:d

with the EAET because the internal field is computed as a radiation proble. -ce a.-

equivalent aperture excitation is determined. The improvement in sensitix'jL- f L ,

EAET over the conventional method has been demonstrated [9].

The BOR3 code was the first to employ the EAET. The EAET subsequentlv has bee-i

employed in a moment method, body of translation, aperture coupling cac 114'. The

EAET also has been incorporated in a moment method BOR code in a more efticien' ulan-

ner than in BOR3 [10].

A detailed theoretiPal treatn-ent of the AMT BOR code from basic BOR theory to

the EAET is given in Appendix A. ALT is a natural extension of the EAET and the

principal reason for developing the ALT BOR code. The theoretical basi' of ALT is

given in Section 2.

1-3



SECTION 2

PLANE WAVE EXCITATION OF BODIES OF REVOLUTION WITH COMPLEX APERTURES

An E-field formulation, moment method solution of body of revolution (BOR) ap-

erture coupling problems is detailed in Appendix A. Consider a plane containing a

straight line and an arbitrarily curved line. The surface of a BOR is traced by the

curved line when the plane is rotated with the straight line as its axis. The

straight line is called the axis of the BOR and is typically the z axis of a standard

P$z cylindrical coordinate system. The curved line is called the generating curve

of the BOR. These and other characteristics of a BOR are discussed in Appendix A,

which also contains a description of the equivalent aperture excitation technique

(EAET).

The BOR3 computer code [9] implements EAET, but is hampered by an unnecessarily

large computer memory requirement; in addition, BOR3 applies only to 6-polarized

incident waves and does not determine internal H-fields. The ALT BOR code based

on the theory in this report extends BOR3 to include 4-polarized incident waves

and near H-field computation. It also requires about 60 percent less computer mem-

ory than does BOR3. In addition, the ALT BOR code employs the aperture loading tech-

nique (ALT) suggested in [9(Section 5.2)), but not previously implemented. ALT ap-

p!1es to apertures considerably more complex than simple circumferential openings.

The extension of EAET to include ALT is discussed below.

Following the BOR theory of Appendix A, the E-field component tangential to ap-

erture surfaces, EAtan' is expanded as

EA = (EAp t + F p) (1)
-tan np np

np

where

t t n
EA = -VA 6(t-tp) -(2)

np np p 2r

EAp - -VAp 6(t-t ) (3)

np np (n)

The curvilinear coordinate t in (l)-(3) (Figure A-1) traverses the BOR generating

curve (latitudinal variation), the i coordinate (Figure A-1) is the azimuthal

2-1



(longitudinal) coordinate, 6(t) is the unit impulse function, the integern(-<n<)

spans the azimuthal BOR (sinusoidal) modes, the interger p (p>O) spans the BOR gener-

ating curve triangle functions that reside in an aperture, tp is the t coordinate ofth

the peak of the p aperture triangle function, and VAt VAn are coefficients
np' np

in units of volts.

The surface current, JA, flowing through the apertures when the apertures are

excited by (1) is expanded as

JA =  (IA p ft(t)ent + 1A n f (t)e~n $  (4)

- p pn np p
np

where ft t) and f (t) are, respectively, the t-directed and 4-directed unit triangle
p p

functions divided by the BOR radial coordinate, p (p is understood to be a function

of t), and IA , IAO are coefficients in units of amperes.
'p' np

thvetr A VALet the p elements of the matrix column vectors I~t, I, VAt, and VW be

n n n n

IAt, IA , VA t, and VA , respectively. As discussed in the appendix (Section A-6),'p p' p' np'

th th
the n mode of aperture surface current coefficients is related to the n mode of

aperture E-field excitation coefficients by the matrix equation

IA ' [YA I [YAt1 VAtjn n n [n
= (5)

IA [YAt] [YAI J VALnj n nn
ttth

The matrix containing the [YA tI etc. submatrices is called the n mode "aperture
n

admittance matrix." The elements of this matrix are obtained from the BOR moment

method theory detailed in Appendix A.

The equivalent aperture excitation technique (EAET) employs (5) in obtainingt
aperture port voltage source vectors, VAn and VAn, from "equivalent aperture port

current excitation vectors" IAt and IAn. The IA and IAn are known (Equation IA-122))n n n n

from the surface current induced on the BOR after the apertures are covered with per-

fect conductors. This is discussed in Section A-6. It also is shown in Section A-6

that excitation of the BOR with an equivalent aperture current excitation in terms

2-2



of I t and IAn or, more conveniently, the aperture tangential E-field in terms of
n n

VA and VAO (the apertures are replaced and the external exciting field removed), re-
n n

sults in the internal fields of the original problem.

If, however, the aperture has complex edges (e.g., a sleeve-fit seam) or is ma-

terial filled (e.g., with a dielectric) or both, some current will flow through this

aperture "load" when excited by the equivalent current source. This is accounted for

with ALT by first identifying the relationship between EAta n and the surface current,

JL, flowing through the load. Corresponding to (4), the expansion for JL is

JL = (ILtp fp(t)e jn O t + ILO fo(t)e j n  ) (6)
- d np p np p

np

Since the walls of the BOR are thin, EAta n fills the aperture load surface and is

related to JL through local phenomena relations; e.g., [11]

JL = (a + jw(e-c0)) EAtan (7)

if the aperture is filled with a material of finite conductivity (a) and permit-

tivity (E).

Equations (1), (2), (3), and (6) and relationships such as (7) yield

t th

where tIand -L are matrix c tos th elements of which are ILt and

n n np

10 , respectively, [0] is the null matrix, and [YLtt ] and [YLn] are diagonal matrices.
np ttn n

The matrix containing the [YL t I etc. submatrices is called the aperture load matrix.

Continuity of current constrains the total aperture current, JA, to be

JA = -JS + JL (9)

2-3



where -JS is the equivalent aperture excitation current given by (A-120). Equations

(4), (A-120), and (6), combined via (9), yield

[IA i1I[J [J+ [J(10)
Equation (10), with (5) and (8), yields

[YAttj [YAto] 4t [[-t] [] tJ(1
IlLt [0 Ai

TMr solution of (11) for VAn and VAn provides EAtan via (1) through (3). As shown in

Appendix A, Section 6, EA can be applied as an excitation resulting in the inter-
tan

nal fields of the original problem.

th
If the q aperture port is an electrically small, dielectrically-filled sleeve-

fit seam (Figure 2), the corresponding elements of (8) lead to

ILt =-Y1tt  VAt  
(12)

nq nqq nq

ILO = _YLO VAO (13)
nq nqq nq

EXTERNAL REGION OPENIDL

INTERNAL RErION OPENINr

Figure 2. Portion of BOR Generating Curve Containing a Sleeve-Fit Joint
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Since the aperture width, h, is much less than X, VAO may be assumed zero. The
nq

0-directed "load" current, IL nq can easily "skirt" the thin aperture as if the ap-

nqqerture were absent and cancel the equivalent port current excitation, -ISq; thus,

by (10), IAO = 0 and (11) is reduced by one equation and one unknown by removing the
th nq
q rows of [YAtI, IYA ], and [YL 1, and the qt columns of [YAt , [Y10 1, and

th
[Y ],and the q elements of VA and IS.

n n n

The aperture load admittance, YLt t  for the sleeve-fit seam is approximated as
th nqq

follows. The jq triangle function is located with peak at the gap. From (2), the

voltage across the gap V is approximatelygap

ejn+

V EAt  dt =-VA t  e (14)gap nq nq 2r

gap

The surface current flowing through the gap, containing both displacement and polar-

ization current, is given, from (6), by

I =IL t ft(tq) eJnO (15)
gap nq q q

or, since f t = (note discussion following (4)),
q q P

I = ILt  eJn (16)
gap nq P

The gap susceptance per unit length is

) I
gap j C(17)

Vggap

where the gap capacitance per unit length C is approximately
g

cg= 5.! (18)

i 2-5 ,



Equations (12), (14), (16), (17), and (18) yield

YL t t = J(Ei (19)nqq 2wh

In terms of dielectric constant, er free space wave number, k, and free space

wave impedance, n,

YLtt Jker (20)
nqq 2irnh

2-6
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SECTION 3

APPLICATION TO A MULTIPLE APERTURE, PARTITIONED CAVITY BOR

The aperture loading technique (ALT) was applied to a BOR defined by the gener-

ating curve of Figure 3. The excitation was the nose-on x polarized unit plane wave

Ee = ejkz ,V/ (21)

defined with reference to the coordinate system shown in Figures A-1 and A-2 and

where k is the wave number corresponding to 300M~z. The body had two apertures:

open front end and a sleeve-fit, dielectric-filled seam. A conducting partition

was located at z = 0.255m.

The partition was assumed to meet the outer wall at z = 0.255m since h was elec-

trically very small. This formed a three-surface junction which could not be modeled

with the ALT BOR code without significant code modification. Variations to the

Figure 3 BOR multiple surface junctions are shown in Figures 4 and 5. An accurate

solution to the Figure 3 aperture coupling problem was achieved by properly defining

the Figures 4 and 5 problems and combining their solutions within the equivalent

aperture excitation technique (EAET) framework described below.

The EAET naturally divides into three parts. Part 1 uses BOR scattering theory

(Sections A-1 through A-3) to obtain the external scattering current with the aper-

tures removed (shorted). Here the Figure 4 BOR (solid line) applies exactly. Part

2 uses BOR theory (Section A-6) to obtain an aperture voltage excitation by computing

an aperture admittance matrix and combining it with an equivalent aperture current

excitation. The current excitation is the negative of the external scattering cur-

* rent induced on the aperture shorts in Part 1. (The ALT improves this aperture volt-

* age excitation computation by adding an aperture load admittance to the aperture ad-

mittance matrix as described in Section 2.) The aperture voltage excitation is ob-

tained by exciting both external and internal regions simultaneously. Neither Fig-

ures 4 nor 5 modei the Figure 3 body exactly for this computation. Since the body is

electrically thin at 300 M1Hz, the internal fields decay rapidly away from the aper-

ture and the Figure 4 model is expected to be adequate for computing the aper-

ture voltage excitation.

Part 3 of the EAET uses BOR theory (Sections A-4 and A-5) to compute the inter-

nal fields by applying the aperture voltage excitation to the BOR. This computation

3-1
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CAVITY PARTITION

COORDINATES (x10 2 m) o- SLEEVE-FIT SEAM

POINT z

1 0 04
2 3.69 0
3 6.40 19.40

6 6.40 20.94
5 6.40 23.525
6 6.40 25.5
7 6.40 110.0
8 0 110.0
9 0 25.5

= 2.625 x 10-2 m

h = 0.25 x 10-2 m

CONDUCTOR

APERTURE

FRONT END APERTURE

| 1 2

Figure 3. Ceneratin, Curve of a Conducting BOR with an Open Front End,a Partitioned Cavity, and a Dielectric Filled, Sleeve-Fit Seam
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6a

COORDINATES (xiO -2 m)

POINT z PI CONDUCTING 
PLATEla 0 -3.15

2a 0 -3 .A00 COVERING SEAM2 3.69 0 53 6.40 19.405 6.40 23.525
6a 6.40 106.35
7 6.40 110.0
8 0 110.0
8a 0 112.75

2 - ,
p

CURVED CONDUCTING
PLATE COVERING FRONTla END OPENING

uFigure 4. Generating Curve for Determining Aperture Voltage Excitation Dueto Plane Wave Externally Incident on Figure 3 Body.
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A.4

COORDINATES (x1O 2 m) 3

POINT z

la 0 -3.15
2 3.69 0
3 6.40 19.4
4 6.40 20.9
6 6.40 25.5
9 0 25.5

2

p

IV

la

Figure 5. Generating Curve for Determining Internal Fields of
Figure 3 Problem from Aperture Voltage Excitation
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results in the same internal fields when applied to the Figure 5 body as for the

Figure 3 body.

This scheme of using the Figure 4 body for Parts 1 and 2 of the EAET and the

Figure 5 body for Part 3 was expected to result in a good approximation to the inter-

nal field of the Figure 3 body when excited by (21).

The numbers of triangle functions on the Figures 4 and 5 generating curves were

chosen to provide the desired resolution in near field. This was critical only for

the Figure 5 geometry since, as discussed above, the Figure 4 geometry was not used

for near-field computation. The Figure 4 expansion functions must be sufficient to

resolve surface current and aperture voltage.

Only the n = 1 BOR mode fields and currents are excited by axially incident

plane waves. The incident field Ee given by (21) is e directed in the 4 = 0 plane.

From (A-55), therefore, the induced surface current has the form

surface current due t = t o t+J sin $ (22)

to Ee of 
(21)

where t is the generating curve coordinate (Figure A-l). Surface currents computed

by the ALT BOR code are prone to exhibit severe oscillation particularly if the BOR

surface has edges and the BOR is thin. This was experienced by Davis and Mittra [15].

The problem was analyzed by Glisson and Wilton [16], and they developed a corrected

BOR moment method code. Another corrected BOR moment method code recently was de-

veloped by Mautz and Harrington [13]. The Mautz and Harrington version, more closely

resembling the BOR code upon which the ALT BOR code has been developed, is in the proc-

ess of being adapted to the ALT BOR code.

The present version of ALT BOR code, meanwhile, has been applied to the Figure

3 problem via the Figures 4 and 5 geometries as described above. The computed scat-

tering current on the Figure 4 geometry exhibited severe oscillations in both Jt and

J¢. In attempting to reduce this oscillation, the tail section of the Figure 4 geo-

metry was rounded as indicated by the dashed line in Figure 4. This avoided the edge

at reference point 7. The curved path was chosen such that the path lengths 6a to 8a

and 6a to 7 to 8 were equal. The generating curve then was segmented (for triangle

expansion functions) in a manner maintaining less than 2:1 variation in adjacent seg-

ment sizes. The rounded tail section and small variation in adjacent segment sizes

resulted in the Jt and J curves of Figure 6. The generating curve was divided into
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86 segments (42 triangle functions). The Jt current then was reasonably smooth. The

iJ current, however, still oscillated severely. Nevertheless, the ALT/EAET was con-

tinued in the belief that the internal fields were not strongly affected by the oscil

lation in J . In FiguLe 5, the currents are plotted vs. the z coordinate of the gen-

erating curve. Each plot point corresponds to the peak of a triangle function.

Two sets of five aperture voltages sources (four at the front end and one at

the sleeve fit seam) were determined. One set corresponded to the air filled seam

and one to the dielectric filled seam (dielectric constant E = 5.5). These sources
r

were applied to the Figure 5 generating curve as indicated in Figure 5, and the inter

nal E- and H-fields computed. The Figure 5 generating curve was divided into 82 seg-

ments (40 triangle functions).

The internal fields have the form (note (A-78) and (A-118))

E-field due to
Ee of (21)= E cos , p + Ez cos z + E sin T, (23)

H-field due to

E of (21) iH sin + in z + H cos l (24)

Contour maps of the magnitude of E , Ez, E 9, IH , H., and 'I in dB are shown in

Figures 7 and 8 where r, is the free space wave impedance. The rosolution of computed

internal field data to achieve these plots was 0.005 m within 0.02 m of an aperture

and 0.01 m elsewhere. The field contours were smoothed wherever oscillations were

likely caused by the granularity of the surface current representation. Field oscil-

lations were evident primarily within a centimeter or so of a conducting surface.

The fields (Figure 8) in the dielectric filled seam case were approximate-

ly 25 dB below those (Figure 9) for the air filled seam case near the seam.

This could have been predicted by comparing the n = 1 mode radiation admittance

(YAt t  of (ii))* at the seam with the aperture load admittances (YL tt of (20))1,5,5 1,5,S

for the air filled seam and the dielectric filled seam as follows. The aperture vol-

tage sources were determined from the equivalent aperture current sources (the latter

are independent of aperture loading) by adding together the radiation and load admit-

tances and inverting the sum as suggested by (11). In the problem under consideration

* The 5,5 matrix element corresponds to the seam aperture for this problem.
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"95,5 0.04 -j1.34 mS

and for the air filled seam and dielectric filled seam respectively

YLtt 5 .78 mS

r = 1.0

YL1,5,5 j9.82 mS
1,,1r =5.5

Thus, the total admittance in each case was

Y = YAtt + YLtt 5[ 0.04 + J0.44 mS
air 1,5,5 +  L1,5,

r =1.0

Y YAtt + YLtt = 0.04 + J8.4B mS

diel 1,5,5 1,5,5[
r =5.5

The smaller Yair resulted in a correspondingly larger aperture voltage excitation.

The air filled seam nearly "resonated" the aperture by almost cancelling the radia-
tion inductive reactance. The dielectric filled seam, on the other hand, introduced

a shorting effect by adding a large aperture capacitance to the relatively small

aperture radiation reactance. Since

20 log lYar /Y diel --25.6 dB

the Z25 dB smaller fields for the dielectric filled seam than for the air filled

seam was to be expected.

The air filled seam problem has been analyzed previously by a time stepping solu-

tion to the time dependent differential Maxwell equations [17]. Maxwell's equations

were solved at each of many time steps until a steady state solution resulted. Their

results differ significantly from ours. Some of this difference, perhaps, can be
attributed to the unwarrented oscillations in surface current as computed with the

present ALT BOR code. The ALT BOR code is presently undergoing significant improve-

ment in this area as mentioned above.
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The ALT BOR code was implemented on a DEC PDP-11/34 minicomputer. The above

problem required hours of central processing time with this machine due to the

enormous amount of input/output time necessary to accomodate large complex matrices

(orders approximating 80) with 128K bytes of main memory.

The equivalent approximate run time assuming the entire problem was solved with

main memory (no peripheral storage) is given by

3 3 3 2 2 2 3 3 3
Time = n(A(m +2 + a + B(m + m + a2 ) + Ci(m + m + a ) + Dim1 + Epm2 )

(25)

where

m, = number of triangle functions on the exterior problem generating curve
(e.g., that of Figure 4)

m2 = number of triangle functions on the interior problem generating curve

(e.g., that of Figure 5)

a = number of triangle functions within the apertures

p = number of near field points

i = number of different incident plane wave directions

n = number of BOR modes

A, B, C, D, and E are system dependent constants.

A second computation with a change in aperture loading (e.g., adding dielectric ma-

terial to the sleeve-fit seam of Figure 3) requires only the additional time corres-

ponding to doubling A3, Ci(m 2+ a2), and Epm2 .

The coefficients in (25) for a Honeywell 6000 series system are

A = 3.2x10
- 3

B = 1.3x10
- 2

-5
C = 5.OxlO

D = 3.2xi0
-2

E = 0.87

where the near field computation time coefficient E is for total E-field (scattered

plus impressed).

The principal computer main memory constraint is m2 + m2 complex words, or if

only the "exterior or "interior" problem matrix is in main memory at one time, the
2 2

larger of m 1 and in2.
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APPENDIX A

BODY OF REVOLUTION SCATTERING AND APERTURE COUPLING

This appendix contains the description of an extension to the Mautz/

Harrington [1] moment method solution of an E-field formulation for scattering from

closed conducting bodies of revolution (BORs). The following conditions are

applicable:

1. The BOR may have edges (disks, tubular cylinders, etc.),

2. The BOR may have apertures that are rotationally symmetric about the
BOR axis,

3. An electrically thin aperture may be of complex shape (e.g., "sleeve" fit)
or material filled,

4. The scattered near electric fields, internal and external to the BOR, can
be computed, and

5. The scattered near magnetic fields, internal and external to the BOR, can

be computed.

The development follows closely that of Mautz and Harrington.

It is desired to determine the electric surface current and the near scattered

field of a perfectly conducting BOR (Figure A-l) excited by an incident plane wave.

In Figure A-l, p, 4, and z are cylindrical coordinates and t and 4 form an orthogonal

curvilinear coordinate system on the surface, S, of the BOR. The t coordinate tran- 4
verses the "generating curve" of the BOR. t and 4 are orthogonal unit vectors in

the t and 0 directions, respectively. The coordinate origin is on the axis of the

BOR but not necessarily at the lower pole as in Figure A-1. Figure A-2 defines the

propagation ve'tor, ke, of the incident plane wave and the transmitter coordinate e .

Note that the transmitter 4 coordinate is zero so that k lies parallel to the xz~e

plane. In Figure 2, 8e and e are unit vectors in the 8e and y directions, respec-

tively.

Consider separately a e polarized incident plane wave defined by

Ee = e e (A-l)e

and a 4 polarized incident plane wave defined by

Ee e je e r (A-2)
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where Ee denotes the incident electric field and r is the radius vector from the ori-

gin. Either plane wave gives rise to t and directed electric surface currents

on S.

1. E-FIELD SOLUTION

The E-field solution is obtained by applying the method of moments to the E-field

integral equation. The E-field integral equation is derived by setting the component

tangential to S of the total electric field equal to zero on S.

The boundary condition that the total tangential electric field is zero on S is

written as

-Es  = e on S (A-3)
-tan -tan

where Es is the electric field due to the electric surface current on S and Ee is

the incident electric field given by either (A-1) or (A-2). The subscript tan de-

notes tangential components on S.

The field Es can be expressed in terms of a vector potential, A, and a scalar

potential, P, as

Es -jwA(J) - V() (A-4)

where

A(J) = J(r') ds' (A-5)

ff 4Trirr-r'I

(D(J) = ffae-krr _ds' (A-6)

Here, r and r' are vectors to the field and source points, respectively, J(r') is

the electric surface current on S, k is the propagation constant, p is the permea-

bility, E is the permittivity, and a is the surface charge given by

a=-- lim S = - vs. J(0 (A-7)
iW AS-*O AS j -
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where n is the unit vector tangential to S and normal to the curve, C, which bounds

the small portion, AS, of S. n points away from AS. The operator V • is the sur-

face divergence on S.

Following the method of moments, J is expanded as

J= (1It Jt  $+ 10j (A-8)
n,j nj -nj nj nj

where I and I are coefficients to be determined and Jr. and J . are expansion
nj nj nj n

functions defined by

nj= tf .(t) ejn

(A-9)

W= f(t) ejn
-nj

The choice of functions f .(t) and fo(t) is discussed below. The integral over S of

the dot product of (A-3) with each one of a collection of testing functions, W-mi '

W@ 0 defined by~mi '

Wt = £fi(t) e
jm

-mi i

(A-10)

Wml = W~)e jmO

is taken to obtain the matrix equation

(A-11)

it + ][z] V

th
where the [Zis are square matrices whose ij elements are defined by

z w'q i j A4(q + V(~ )ds (A-12)

S
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where p may be either t or 0 and q may be either t or 4. Also, t and V are
th m m

column vectors whose i 
elements are given by

VP. =ffWp - Ee d s  (A-13)

S

where p may be either t or 0. Lastly, It and I0 are column vectors of the coeffi-

cients It . and I. appearing in (A-8).
nj nj

The following manipulations serve to transfer the differential operator on 4

in (A-12) to WP.. If S is closed,
-mi

f s" ( W) ds = 0 (A-14)

S

where W denotes WP.. If S has an edge, the surface divergence theorem yield&.
- -ml

ff s ((P Wf) ds =fi )Wdc
S C

where C is the path of the edge. Hence, with W chosen such that 5.W 0 along the

edge, (A-14) holds whether S is open or closed.

The representation

V W -- (P W. t -) + (W (A-15)

of the surface divergence and the definition

9T ~ t + T) (A-16)
-s 9t P 4)

of the surface gradient imply that

V * (('W) = DV W + W . V ( (A-17)-S -. S -S

The surface gradient of (P in (A-17) can be replaced by the ordinary three-dimen-

sional gradient of D because (A-16) is the component of the three-dimensional gradi-

ent tangential to S and W is tangential to S. Substitution of (A-17) into (A-14)

and then (A-14) into (A-12) yields
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ffp j W P A( j'q + u (P q ds (A- 18)mnijmi nj mi nJ

S

where

op = V . wp
m jW - -mi (A-19)

Since, as shown in Appendix B of Reference 1, (A-18) is zero for m # n, (A-lI)

reduces to

[7[ j nO, ±1, ±2, (A-20)<Z n <] n nJ L
where[Z pq] is rZ pof (A-18). It also is shown in Appendix B of Reference 1 that the

I nj L nn

elements of[n are given by

.. t k RPf I (t) 'ft(t') (G5 sin v sin v' + G4 cos v cos V')

f f

" t(k) p'ft(tt)) Gs ( A1)

Z _ fdt pfO(t) fdt' ( 2 f3(t') G6 sin v' + ('f(t')) G4 )

(A-22)

Z n fdt (dt' p'f (t') (k 2 pft(t) G sin v + ( ) G(A-23)
J j i 6 P, at fit) G4'

2 2

zoo j rl dt pfO (t) dt'p'f (t')(k2G 5  n 2 G (A-24)
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where n is the wave impedance, '7E , v is the angle between the tangent to the gen-

erating curve and the z axis,

7 -jkR

G = f jkR cos (nW') (A-25)

0

-jkR

d4ekR cos cos (nW') (A-26)

-j kR

G6  f dv' e --kR sin ' sin (no') (A-27)

0

and

R = (p-p)2 + (z-z')
2 + 4pp' sin2

Here, p, z, and v depend on t while p', z', and v' depend on t'.

To evaluate (A-21) through (A-24), pf (t) is defined as a four-impulse approxi-

mation to a triangle function in the following manner. Letting t - (p,z), denote

that p and z are cylindrical coordinates of the point t, an odd number greater than

or equal to 5 of consecutive points t = (p,z) = ti = (pt, z ), i - 1, 2, ... P on the

generating curve of the body of revolution such that (pl, z1) and (p , z ) are the

poles. If the body of revolution has no poles because the generating curve closes

upon itself, as with a torus, then two points must be overlapped such that

(PP-I zP-l) = (P, Zj) and (p-, z) = (p-, z-)

The generating curve is approximated by drawing straight lines between the points

(pi, z), i = 1, 2,... P and defining points

P1 + pi+1  z i+
tti = (Pi zi) =  2 2 (A-28)

on this approximate generating curve. The length, di, of the interval centered

about ti is given by
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d - 01+1 - Pi ) 2 + (zi+i zi) (A-29)

In terms of coefficients Tp+4i_4 defined by

2
Tkd2i_ 1

4i-3= 2(d2i_1 + d21)

1
k(d2i- + - d 2)d21

4i-2 d +d
21-1 2

(A-30)
1

k(d21+2 + d21+l)d21+l

T4i-1 d +d
21+I + 2i+2

kd2
kdT 2 i+2

T4i 2(d +d
2i+1 2i+2

one constructs

4pft (-t+2) 2  (A-31)

pf() T p+4i_4 ttp21)

p=l

where 6(t) is the unit impulse function. The right-hand side of (A-31) is the de-

sired four-impulse approximation to a triangle function (Figure A-3).

The pf1 (t) are chosen equal to pft(t) except at an edge where the * component
of surface current approaches infinity; therefore, the Pf i(t) functions nearest

edges are chosen as ramp functions (Figure A-4). A four-impulse approximation re-

sults in

f(t) L TR 1 4 6(t-tp+ 2 i -2 ) (A-32)off~t =kp=l Tp4-

where TRp+41-4 T p+41-4 except for TRI and TR2 if an edge exists at the beginning

of the generating curve or for TR4nel and TR4ne if an edge exists at the end of the j
generating curve where ne = number of pf traversing the generating curve. For a be-

ginning edge,
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TR I = 2kd - TI
(A-33)

TR 2 = 2kd2 - T2

F r an end edge,

TR = 2kd - T
4ne-l ng-l 4ne-l

(A-34)

TR = 2kd - T
4ne ng 4ne

where ng = number of segments traversing the generating curve.

For 2L (pf.(t)), the four impulse approximation

4
d Pi t ) = r (A-35)

dt pi p+4i-
4  (t-tp+2i-2)

to the derivative of the triangle function of Figure A-3 is chosen. Figure A-5 il-

lustrates A-35.

dzi-1 + dz2i "i"

d 2i2-

- -. I I J, I l I

I I  1 1

2W + 2i+2

Figure A-5. Derivative of Triangle Function (Solid) and Four Impulse

Approximation (Arrows)
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The coefficients T'+ 4 1-4 appearing in (A-35) are given by

d2 i- I
T41-3 d21 + d

21-1 21

d
T'. 21T4i-2 d2 i I + d2

(A-36)

-d 21+l
T4il d + d21i-i 21+2

T , -d 2i+2

S d2 i+l + d2 i+2

where di is defined by (A-29).

Substituting (A-31), (A-32), and (A-35) into (A-21) through (A-24) yields

tt1Z inE (T~ Tq (G5 sin v1, sin v., + GCos vi, Cos vl
p=1 q1 .l

T',T G (A-37)

4 4
n : E (T, T (G sin i, + n TRcs T (A-38)
nijpl q(G v jq 6 34

4 4

zni -n (TTR G 6 sin v + T TR G (A-39)p= q= ' p

Zi = n E TE TR , TR (G n 2 - (A-40)nij p=1 q=1 p Rq 5  k 2Oil4

where

p' = p + 41 - 4

(A-41)

q' = q+4j -4
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V = p + 21 - 2
(A-41)

J' q + 2j - 2

The subscript i' denotes evaluation at ti,. The subscript j' denotes evaluation at

tj,. G4, G59 and G6 are given by (A-25), (A-26), and (A-27) in which R is evaluated

at t = ti,, t' = t., which, in terms of cylindrical coordinates, is at p, z, p', z'-J

Pi', zi'' Pj, z.,. If ' = j', R is replaced by an equivalent distance, Re,

given by

Re = (di,/4)2 + 4p, sin2 (@'/2) (A-42)

(A-42) may be obtained by displacing the field point a distance d ,/4 perpendicular

to the plane of the source loop. Now, di,/4 is the equivalent radius [2] of a flat

strip whose width is d. . (A-42) also can be obtained by averaging R2 for field

points displaced a distance di,/4 in either direction along the approximate genera-

ting curve from the source loop.

An N point Gaussian quadrature formula is used to calculate the integrals

G4 , G5 , and G6 defined by (A-25), (A-26), and (A-27). According to this quadrature

formula,

f( ') dO' = - k f( (Xk + 1)) (A-43)

fo k=l

where f(Q') is the function being integrated and and Ak are constants tabulated

by Krylov [3]. In (A-43), the multiplier, , and argument, -1 (xk + 1), instead

of just xk are due to the transformation of Krylov's interval from -1 to I into the

interval from 0 to T.

Since replacement of i, j, p, and q in (A-41) with J, i, q, and p, respectively,

implies replacement of ', j', p', and q' in (A-37) through (A-40) with j', i', and

q', and p',respectively, and since G4 , G., and G6 are symmetric in i' and j', it is

evident that

ztt ztt (A-44)

nij nji
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Z t _zt
nij nji

(A-44)

zoo Zoo
nij nj i

An efficient method of computing (A-34) through (A-40) that takes advantage of (A-44)

is employed in the computer code described in [4].

2. PLANE WAVE EXCITATION

th -+-The n mode generalized voltage vectors, V and Vn, are matrix column vectors
with elements defined by (A-13) (with m replaced by n). For plane wave excitation,

(A-13) becomes, after substitution from (A-1), (A-2), and (A-1O),

2 -j (k r+n)

ni dt ofi(t) dO (t.6) eni i e

0

V6 fdt f2 -j (k er+nO)

0
(A-45)

fdt 2 -J(k r+nq)t *  dt of (t) d e
nfi f e

0

V" f fdt of (t) f dO (.e eke'n)

0

where the second superscript on V is e for the incident field Ee given by (A-1) and

for Ee given by (A-2).

With a view toward evaluation of (A-45), it can be seen from Figures (A-2), (A-6),

and (A-7) that

t.e = -sin e cos v + cos e sin v cose e e

6e= -cos 6e sin A-46)

t'0 = sin v sin
e

A-14
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pp

Figure A-6. Unit Vectors p, i, P', and in xy Plane

/t,

/

p)

Figure A-7. Unit Vector t' in p'z Plane
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=Cos (A-46)

k .r = - kz cos 6e - kp sin e cos ¢
~e~e e

The substitution (A-46), (A-31), and (A-32) into (A-45) and the integral formula

.- n 27e J (kp sin ee cos 0 + no)
Jn(kp sin 0e) = 2 f e d (A-47)

0

deduced from (9.1.21) of [5] for Bessel functions, yields

4 jkz cos e

Vtn -- En T p+4i-4(-2Jn sin 6e cos v + j (Jn+l 
- Jn-i)co

s ee sin e e

p=l

4 
jkz cos @e

T (3n + T3)cos e
ni k Tp+4i4(Jn+ + Jn-i e e

(A-48)

4 jkz cos 6
-- - + Jn z)sin v e

ni k. p-i p+4i-4 n+l n-i
V ,,n k jkz cos 0e!

-- T p+41-4(J n+ I - Jnl ) ee
ni k p=l

where

J J (kp sin e ) (A-49)n n e

In(A-48), , z, and v are to be evaluated at t = t

A-216



3. SCATTERING CURRENT

The solution to (A-20) yields the electric surface current coefficients It . Io
n 3  nj

for each BOR mode n. The expression (A-8) for the corresponding surface current can
be simplified, for plane wave excitation, by combining the n and -n terms. The sub-

stitution (A-9) into (A-8) yields

nq e Jn {(ft itq)i + (f f oq)o} (A-50)-n n

where f t is the transpose of the column vector tt of the ft(t) fP is the transpose
of the column vector to of the f.(t), and and I are column vectors of the co-

3 n n
efficients It and Io respectively. The additional superscript, q, is either 8 or

nj nj
P, depending on whether the incident electric field is 8 polarized as in (A-i) or 4
polarized as in (A-2). The column vectors, qare obtained by solving thep o a r z e a sa i e i n s o(i gAh

matrix equation (A-20) with the additional superscript q on the column vectors there-
in to denote the polarization of the incident electric field.

Inspection of (A-21) through (A-27) reveals that

[tt. toJ I t t.I n = 0, 1, 2, ... (A-51)

It is apparent from (A-48) that

n = 0, 1, 2, ... (A-52)

Since the property (A-51) survives matrix inversion, it is evident from (A-20) and

(A-52) that
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ffi- n- 0, 1, 2,... (A-53)

In view of (A-53), (A-50) becomes

je (t _*te. -nt *) e)os

--(f 10 t + 2 (ftIto) cos (n) + 2j(fi tn')  sin (no)}

n-l

(A-54)

J f 0) + E f2j(f
t Into) t sin (no) + 2(f6 0o)n cos (no)}

0 n n
n=l

where ft and fi are row vectors of the ft(t) and f (t), respectively. If pfw(t)

and pfo(t) are the triangle functions themselves, rather than the four-impulse approx-
f

imations (A-31) and (A-32) to the triangle functions, then

iti + {21t. t cos (n))+ 2j Ino sin (no)}
-1 t n

~t=t2+

21+1 p2i+l

(A-55)

$0 + {2jt t sin (no) + 2 10o * cos (no)}

1i ni
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4. NEAR E-FIELD

Near E-fields are computed in a manner similar to that described by Bevensee [6].

The E-field, Es ,radiated by the n mode of BOR current J , along a circular path-n -nconcentric with the BOR axis is sought. This path is thickened into a ribbon of sur-

face area S (Figure A-8). A test surface current

j = t + (A-56)
-n -n -n

having e circumferential variation, resides on S where the t component,J, lies' -n'

in the plane formed by the BOR generating curve and BOR axis and Jo is the @-directed
-n

component. By reciprocity [71, the t and components of E S(J ) satisfy
-n -n

I S(Jn) a ds= (fja)'J ds (A-57)

-n -n -nd JJn -n -n
~s

where a = t or 0 and E is the E-field radiated by -n-n ~ -n
th

With J given by the n mode terms in the summation (A-8), the right-hand side-n
of (A-57) becomes

JI' -a Zat jt + a n (A-58)
0J )-J ds= Z It+Z I(-8

nf-n -n n n n
S

and Zat Za4Owhere I and I are defined following (A-12) and Z and Z n are matrix row vectors.n n n n

The i elements of Z and Z are
n n

-ab ()-Jba ds
ni jj -nZn -ni

S
(A-59)

-ff (jA(ja) + a( a) ).Jb  ds

S
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,,-SURFACE AREA S

Figure A-8. Body of Revolution with Near-Field Test Ribbon

A

t-I t2 t3 t4 t

Figure A-9. Near-Field Test Ribbon Triangle Function (Solid)

and Four-Impulse Approximation (Arrows)
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I

where a = t or 0 and b - t or 0, and the vector and scalar potential functions, A

and D, are given by (A-5) and (A-6

Let t and Jo be defined b,n -n

it= (t) e-jno (A-60)
~n

o = f(t) e-j n o (A-61)
*n

where pf(t) is the "triangular" function shown in Figure A-9. The right-hand side of

(A-59) then is within a minus sign of (A-12) if m and n in (A-12) are each replaced

by -n, and ft(t) and f.(t) are each replaced by 1(t). In this comparison of (A-59)
_j ~j

with (A-12), the to and 4t terms on the left-hand side of (A-12) are reversed from

these of (A-15); therefore, the four-impulse approximations to pf(t) andd-(pf(t)):[t

are given by

4

P (t) T 6(t- (p- -)A)
~p=l

(A-62)

4
d 6(t-( 1)A

p=l

where

1 = T kA

T- - k3A
T =T A
2 3-4

= -, = 1

3 T4 2
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and comparison with (A-37) through (A-40) and (A-25) through (A-27) yields

2tt qTG4

Zni =-i {Tp, (G5 sin vi, sin v + G4 Cos v, cos v) - Tp G
p-i q--I

(A-63)

4 4

t = n { 2 {TRp, Tq G6 sin v - n TR, T'G (A-64)
nip q6kPp. q4

p=i q=l 1

4 4
hGsin ,- T G (A-65)

ni n. {Tp qG6sn1 l k
p=li qi~l

4 4 2
{TR n G4) (A-66)

ni p q T q 5  2Piq

p=l qffl kp,

In (A-63) to (A-66)

T e- J kR

G = do' k cos (no') (A-67)

54 0 kR
05 = J e e -j, ,)68

Tr do' ekR sin 0' sin (no') (A-69)

0

R= (pi'- q)2 + (zi, - Z)2 + 4Pi~q sin2 6j) (A-70)

p' = p + 4i- 4

i- p + 2i - 2
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v is the angle between the t coordinate of the test surface, S, and the z axis; P
q

and z are the p, z coordinates of t in Figure A-9.
q q

Due to the rotational symmetry, the e variation of J (Equation (A-9)) implie-Du vateritational Q)

the same ej variation of Enn);i.e., E(Jnn ) may be written

ES(Jn) = tEt ejn + e (A-71)
-n -n n n

where Et and E are 0 independent. If Es is approximately uniform over the width ofn n -n

S, the left-hand side of (A-57) becomes approximately

4A 21r

ff n _in n dSn f f ft od

(A-72)

= Ea 41An

where a = t or *. Equations (A-57), (A-58), and (A-72) yield

Ea 1 (gat -t +g

En = 4- (n n n n)a (A-73)

The t and 0 components of the E-field Es radiated by the BOR surface current

are expressed as

i.E s -t + E ejnO +Et eJn)= 0 + nE + n

n=-1

(A-74)

Es = E0 + n: (EO e jn + 0 e -Jn)
S1-n
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where Et and E¢ are given by (A-73). The positive and negative "n" modes -- e.g.,
n n

Et and Et -- can be combined, as shown below, for each polarization, e and * , of
n -n
incident plane wave (A-i) and (A-2). In the following development, a second super-

script on n n n or € refers to this incident field polarization.
p n n n n

It is apparent from (A-63) through (A-69) that

tt -= tt

-n n

=to = _to
-n 

n 

(A-75)

-n n

-n n

From (A-73), (A-53), and (A-75), therefore,

to toEt = Et
-n n

(A-76)

Eo0 -E 
e

-n n

for a 0 polarized incident field and

Et = Et¢

-n n

(A-77)

E = EO
-n n

for a o polarized incident field. Equations (A-74), (A-76), and (A-77) yield

O 0

ES= (E + E 2 os n)t + ' E 2j sin no (A-78)

- E0  E n cs nl

n-1 n-l

A-24
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for a 6 polarized incident field and

Es= Eto 2J sin ni+ (E0 + ~2cos4) (A-79)

n=1 fl 1

for a c~polarized incident field.

A-2 5



5. NEAR H-FIELD

Near H-fields (radiated by the BOR electric surface current) are computed in a

manner analogous to that for E-fields. Again, reciprocity is employed in the deri-

vation and the test current (now magnetic rather than electric) is given the same

"triangular" t variation (A-62). A simpler t variation, such as pulse, could have

been chosen for computing the H-fields since derivatives of the test current then do

not occur; however, the choice of triangular variation maintains a consistency through-

out the overall analysis. The H-field derivation, and computer programming, then can

follow closely the H-field development of Mautz and Harrington [i].

The test surface, S, of Figure A-8 now contains a magnetic surface current, M,

having eJn circumferential variation. By reciprocity, [7]

ff Hn( n)M n -ffn ds (A-80)

S S

where E now is the E-field radiated by M n , J is the nth mde surface current on S,

and Hn is the magnetic field radiated by j n" From [1 (Section III)]

-jkjr-r'j1 // M(r')e-Jl-

n(M) = -V x 4 J ds'

(A-81)

1 ffl+ki-'3  -Jklr-r'I (-r') x M (r') ds

S

where r is a field point at which E is evaluated and r' is a source point (on S) at-n

which M is evaluated. Primes denote source coordinates and vectors. Then,
-n

M = Mt t' + MO 4' (A-82)
-n n n

and

A-2 6



Nrr) MCr') -r-'x Mt (t', ') + (r-r') x *'M n (t',#') (-3
Cr-r') x M W) r' x i' M X TOW )(A-83)

The cross products on the right-hand side of (A-83) are evaluated by expressing all

vectors in terms of unit vectors p, $, and z in the p, , and z directions,

respectively.

r = pp + zz (A-84)

r' = pp' cos (0'-0) + Op' sin ('-0) + zz' (A-85)

=p sin v' cos (W'-) + 0 sin v' sin (@'-4) + z cos v' (A-86)

' -p sin (0'- 0) + 4 cos (0'-0) (A-87)

Equation (A-85) has been obtained by first writing

I = p'p' + z' (A-88)

and then using Figure A-6 to express p' in terms of p and 4. To verify (A-86), use

Figure A-7 to express t' in terms of p' and z and then use Figure A-6 to express p'

in terms of p and $.

Substitution of (A-84) through (A-87) into (A-83) yields

(r-r') x M (') = {p (-p' cos v' + (z'-z) sin v') sin ( '- )~n

+ * (-(p-p' cos (4'-)) cos v' - (z'-z) sin v' cos

(A-89)
t

+ zp sin v' sin (N'-4)} Mt(t', ') + { (z'-z) cos (W'-)n

+ $(z'-z) sin (0'-0) + z(-p' + p cos (''-'))} MO(tr X)n

Let v be the angle between t and the z axis. v is positive if t points away from

the z axis and negative if t points toward the z axis. Then

t p sin v + z cos v (A-90)
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and the t and components of (A-89) become

i.[(r-r') x M (r')] - -(p' sin v cos v' - p sin v' cos v

- (z'-z) sin v sin v') sin ('-4) Mt(t",4' ) - {((p'-p) cos v (A-91)

- (z'-z) sin v) cos (0'-0) + 2p' cos v sin 2 ( )} M n(t',')

x M nr')] = {((p'-p) cos v' - (z'-z) sin v') cos (0'-0)

(A-92)

-2p cos v' sin2 ('- } Mt(t',O ') + (z'-z) sin('-)M(n ' )

2 n si

The distance jr-r' J appearing in (A-81) is the square root of the sum of the

squares of (z-z') and the projection of (r-r') in the xy plane. Hence,

,= (zz,)2 + P,2 + p2 -2pp' cos

(A-93)

/(p-P,)2+ (z-z')2 + 4pp' sin2 ( )

An integral with respect to ' results when the surface integral in (A-81) is

iterated. Because this integral with respect to 0' is an integral of a 2n periodic

function of ' over the period 2w, 0' may be replaced by 0' + 4 without changing the

value of the integral. Substitution of (A-91) through (A-93) into (A-81) yields

A-28-



(Mn3 )f' dt' f d ' G14(t', '+0) (P' sin v cos v' - P sin v' cos v

0

3 2T
-(z'-z) sin v sin v') sin f'p dt' f d M' GNMt, *+)

0

[((p'-p) cos v - (z'-z) sin v) cos 0' + 2p' cos v sin2 (!]

+ f 1 dt' d' GM (t',4'+) [((p'-P) Cos V' -(z'-z) sin v')

0

(A-94)

cos 0' - 2p cos v' sin
2 ( -

2,a

k 4 P' dt' dO' GM (t','+0) -z) sin 0'
0

where

I

G 1 + JkR e-jkR (A-95)

R /(p_p,)2 + (z_z,)2 + 4pp2 sin2 (.) (A-96)

All the iterated integrals in (A-94) converge because the integrands are at least as

well behaved as R

Let

t]

M Wr) =M (t',O 1 ) or MOt~f-n ~ n -

A-29
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where

Mt = f(t') e - i n o '

~n
(A-97)

M = W(t') e - i n '

n

and pf is the "triangle" function of Figure A-9. With J n given by the n thmode terms

in the summation (A-8), the right-hand side of (A-80) becomes

(Mn)at rn+ UaJ = (A-98)

S

where a - t or 0, it and i are defined following (A-12), and Uat and U are matrix
n n n n

row vectors. The ith elements of U8t and Ua  aren n

ff i -jk
3 f dt p ft(t) fdt' r' f(t') (P' sin v cos v' - p sin v' cos v

A-9 9)

- (z'-z) sin v sin v') 
G3

(A-100)

- (z'-z) sin v') G2 - I p cos v']

Sk 3 fdt p 4(t) fdt' p'?(t') [((P'-p) cos v

(A-101)

- (z'-z) sin v) G + GIp' cos vI

U0n jkd3  d fi0(t) Jdt' p'?(t') (z'-z) (A-10
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where

.7T

G = 2 j d4' G sin2 (0'/2) cos (no') (A-103)

0

G2  f do' G cos o' cos (no') (A-104)

0
* ~7T

=-f0 do' G sin 0' sin (no') (A-105)* ~ 3 J

The four-impulse approximations (A-31), (A-32), and (A-62) for pft(t), pfI(t),

and p'f(t') reduce (A-99) through (A-102) to

4 4

utt T, Tqni =  p+4i-4 Ot

p=l q=l

4 4

ni E TRp+ 4 i- 4 E Tq s¢

p=1l q=!
(A-106)

4 4

ni Tp+4i- 4  X Tq st

p=l q-l

4 4

Sni TRp+4- 4 F2 Tq U s

p=l q=l

where s denotes the double subscript p+2i-2,q and

uij -jk( sinv cosv-Pi sin v cos vi - i  sin vi sin v 3  (A-107)

ij  k((Pj-Pi) cos v - (z-z) sin )2 (A-108)
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i - t - P ) cos v - (z.-z ) sin v)G 2 + kG cos ) (A-109)3j / 1 i

=jk( - zi)G (A-110)

ij iz z1) 3

vi is the angle between the approximate BOR generating curve at (p,,zi) and the z

axis, v is the angle between the t coordinate of the test surface and the z axis,

and P, z. are the p, z coordinates of t in Figure A-9. G1 G2' and G3 are given

by (A-103), (A-104), and (A-105) in which G is given by (A-95) with R of (A-96)

evaluated at (p, z, p', z') = (pi' zi, pi, z.).

Due to the rotational symmetry, the e jn  variation of J (equation (A-9)) implies~n

the same e n variation of H n(4n ) ; i.e., Hn(Jn) is expressed by

H (Jn = t Htn ej n $ + H n e n  (A-1l1)

where Ht and H are 0 independent.
n n

If H is approximately uniform over the width of the test surface, S, and M is~n -n

given by (A-97), the left-hand side of (A-80) becomes approximately

ft 4A 2ir

-f! n HJ)Ma ds=-Ha f 4 f(t)pd dt = -H a 41TA (A-112)
JJ n(-n .-n nl f n

04 0

where a = t or *. Equations (A-80), (A-98), and (A-112) yield

--at It + -aO I (A-113)
n 41TA n n n n

The t and * components of the H-field H radiated by the BOR surface current are
expressed as
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i.H = H0 + (,, eJnl + lt e-Jn )
0 -n

n=l

(A-114)

H- HO + 2 (H' ejnO +H e j n )

n= 1

where Ht and HO are given by (A-113). As with Es of (A-74), the positive and nega-
n n

tive "n" modes of H can be combined, as shown below, for each polarization, 0 and q,

of incident plane wave (A-i) and (A-2). A second superscript on Hn, Hn' orn
n n n n

in the following development refers to this incident field polarization.

It is apparent from (A-99) through (A-102) that

-tt -tt

-n n

-n n
(A-115)

0O t = 0
t

-n n

-n 
n

From (A-113), (A-53), and (A-115), therefore,

to to. Ht =-_H t

-n n
(A-116)

-n n

for a 0 polarized incident field and

Ht¢ = Ht
-n n

(A-117)

H t 
= -HO

€

-n n

for a € incident field. Equations (A-114), (A-116), and (A-117) yield

A
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FI

H- tj 2+ + H 2 cos ndK)4 (A-118)

n-i n-1

for a 8 polarized incident field and

H t (H + H 2 cos no)i + HO2j sin no o (A-119)

n-1 n=1

for a 0 polarized incident field.

^n n n

(a) (b) (c)

Figure A-1O. An Equivalence Theorem
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6. APERTURE COUPLING

The method for computing the near scattered fields of a BOR with edges (Sections

i through 5 of this appendix) is, in theory, directly applicable to computing the

fields penetrating a conducting BOR with rotationally symmetric apertures; e.g.,

Figure A-1. The internal field is the vector addition of the scattered field (Sec-

tions 4 and 5) and the impressed field. For plane wave excitation, the impressed

field is the incident field Ee given by either (A-l), (A-2), or a linear combination

of (A-l) and (A-2). Each BOR model component of E e , at a field point of interest,

is readily computed from relations similar to those of Section 2.

As often occurs with well-shielded bodies (e.g., those having only tiny or thin

apertures), the scattered and impressed fields are nearly equal and opposite at

points within the body. The vector sum of these fields then is a subtraction of al-

most equal numbers with an associated loss of accuracy. This undesirable computation

is avoided by invoking an equivalence theorem, due to Schelkunoff (8], whereby the

cavity field is computed as a radiation problem once an equivalent aperture excita-

tion is determined. This theorem states that the original problem, containing sources

external to the body, can be replaced with an equivalent problem having only

aperture current sources for excitation. Figure A-1O illustrates this where the

original problem (Figure 10a) is equivalent to the sum of the two problems (Figures

lOb and c). The induced surface current J in the vicinity of the aperture is found

for the apertureless (cover aperture with conductor) body in the presence of the ex-
ternal sources (Figure 10b). Then, (-J ) becomes an aperture excitation resulting

in the external fields of the original problem (Figure 10c). The application of this

theorem to the moment method formulation of the BOR aperture coupling problem has

been described in [9]. An intermediary aperture tangential E-field computation was

employed and the method called BOR3. The method is called the Equivalent Aperture

Excitation Technique, EAET, in this report.

A modified method that avoids the aperture field computation has been developed

[101; however, knowledge of the aperture tangential E-field when the aperture is

"empty" is useful in incorporating the Aperture Loading Technique, ALT, discussed in

the main body of this report. The ALT accounts for odd shaped, material filled,

thin apertures such as occurs at "sleeve" type joints between BOR sections. Thus,

the following description of EAET is an adaptation of [9] to the development in

Sections 1 through 5 of this appendix.
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The apertures are removed (covered with perfect conductors). The induced current

on this "short-circuited" BOR is expanded as

JS (Istj jt +IS ' J ") (A-120)n -nj nj -nj
n,j

where column vectors IS and IS n, composed of the coefficients IS and ISnj respecn nj rspc

tively, are the solutions i and V of (A-20).
n n

The apertures are replaced (shorting conductors removed) and are filled with the

equivalent aperture current source, JA, expanded as

JA - E (IAt Jt + IAn' JO.
S np -nip np -nj (A-121)

n,pp

where

IAtp. - ISt
np ni p

(A-122)

IA4 - _ isn
np njp

and the pth t-directed (or 0-directed)aperture expansion function is the jth corre-
sponding generating curve expansion function. The external incident field, Ee , is

removed and this new problem analyzed as follows. First, the aperture tangential

component of E-field is expanded as

A _ (EAt i + EA ' 4) (A-123)Et an (E np np

n,p

where

EAt= _ VAt 6(t-t- 
)ejn O

np np 2jP+ 2r

(A-124)

U n = - VA 6(t-t ple n

np np 2j p+1 2 i

6(t) (Section I of this appendix) denotes the unit impulse function, and t2jp +1

(Figure A-3) is the BOR generating curve t coordinate of the triangle function
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Pfpt) (or Pf o (t))peak. The jph generating curve triangle function is the pth

aperture located triangle function.

Each VAt  and VAO can be thought of as port voltage sources through which a sur-
np np

face current flows. One seeks values of VA an, VA for which JA, given by (A-121)np np
and (A-122), flows through the aperture ports. These values are obtained by relating

the IAt and IAO of (A-121) to the VAt and VAO by the matrix equation
np np np np

[IA 1 [[YAtt] [YAt 2 VA1

and solving (A-125). In (A-125), the pth elements of At, IA, VA(, and VA2aren n jn _n_

IAtp, IAop, VAt , and VAOn, respectively. The matrix of [YAab , ab tt, t, to,np' np np np n

and Osubmatrices is called the "aperture admittance matrix."

th ab
The pq elements of [YA ], ab = tt, ot, to, and 00, are found by "exciting"

n
the BOR with the tangential aperture field, EAtan, given by (A-123). This requires

satisying the boundary condition

E =EA on S (A-126)-tan ~tan

where (Section 1 of this appendix) Es is the field radiated by the BOR surface cur-

rent, J. A development similar to that following (A-3) applied to (A-126) yields
th -i o(A-20) with the exception that the j element of Vn and Vn are, respectively,

VAt

Vt= V Anp =j p

0 otherwise (A-127)

VAm j-j
np p

nj 0 otherwise
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The elements of and l in (A-20) corresponding to aperture expansion functions are

the elements of 1An and IA ; i.e.,n n

nj Itp i

I- IA tif j - j
a p, p

(A-128)

Io . IA if j =j
nj np p

In light of (A-125), (A-127), and (A-128) and defining the inverse of the impedance

matrix in (A-20) as

tt = yt

ffi (A-129)

LYn n [z L n n [

the pqt elements of [YAnt] [Y t], [y o], and [g 0]1 become

npq nj pj

YA t = Y ot
npq njji

pq
(A-130)

YA to Y yto
npq n pj qn

npq nj pJpq

The solution of (A-125),with lAt and IAn given by (A-122), provides the aperture

port voltage sources that correspond to the aperture tangential E-field within the

approximation (A-124). Excitation of the BOR with these voltage sources yields the
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internal fields of the original problem. This final analysis is carried out bysolv-ing (A-20) for the BOR surface current coefficients with n and V given by (A-127).These current coefficients then are used to determine the near E- and H-fields asdetailed in Sections 4 and 5 of this appendix.
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